Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

Maria C. DeRosa,^a Gary D. Enright,^b Christopher E. B. Evans^b and Robert J. Crutchley^c*

^aDepartment of Chemistry, California Institute of Technology, Pasadena, California 91125, USA, ^bNational Research Council of Canada, Ottawa, Ontario, Canada K1A 0R6, and ^cChemistry Department, Carleton University, Ottawa, Ontario, Canada K1A 0R6

Correspondence e-mail: robert_crutchley@carleton.ca

Key indicators

Single-crystal X-ray study T = 173 KMean $\sigma(\text{C-C}) = 0.003 \text{ Å}$ Disorder in solvent or counterion R factor = 0.040 wR factor = 0.098 Data-to-parameter ratio = 21.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

The photodecomposition product μ -oxalato- $1\kappa^2 O, O': 2\kappa^2 O'', O'''$ -bis{bis[2-(2-pyridyl)phenyl- $\kappa^2 C, N$]iridium(III)}-acetone (1/1.974)

An attempt to grow crystals of [Ir(ppy)₂(vacac)], (I), from an acetone- d_6 solution formed instead crystals of [Ir(ppy)₂]₂(μ -oxalato)] acetone solvate, (II), [Ir₂(C₁₁H₈N)₄(C₂O₄)]-1.974C₃H₆O, where ppy is the phenylpyridine anion and vacac is vinylacetylacetonate. Each Ir^{III} ion in (II) is in a pseudo-octahedral coordination environment, where the pyridine N atoms are *trans* to each other and the phenyl C atoms are *trans* to the O atoms of the oxalate bridging ligand. There are two crystallographically independent dimer molecules, each lying on an inversion centre. It is suggested that the oxalate ligand is formed in a series of steps initiated by the aldol condensation of acetone with vacac.

Received 1 March 2005 Accepted 18 March 2005 Online 27 April 2005

Comment

The excited state of cyclometallated iridium(III) complexes is readily quenched by oxygen and this makes these complexes ideal for incorporation into oxygen-sensing devices. We recently published a study demonstrating their utility (DeRosa *et al.*, 2003), as well as a study describing the syntheses of a number of promising iridium complexes (DeRosa *et al.*, 2004).

$$\begin{array}{c|c}
\hline
\begin{array}{c}
N \\
C \\
N \\
\end{array}
\end{array}$$

$$\begin{array}{c}
N \\
C \\
\end{array}$$

$$\begin{array}{c}
N \\
\end{array}$$

$$\begin{array}{c}$$

In an attempt to grow crystals of $[Ir(ppy)_2(vacac)]$, (I), where ppy is the phenylpyridine anion and vacac is vinyl acetylacetonate, from an acetone- d_6 solution of the complex, golden-yellow crystals of the dimer $[\{Ir(ppy)_2\}_2(\mu-oxalato)]$ acetone solvate (1/1.974), (II), were isolated. We present here the crystal structure of (II).

Crystallography revealed the space group of (II) to be triclinic, $P\overline{1}$, with both Ir dimers of the unit cell centred on inversion centres, and the presence of acetone in the crystal structure. The asymmetric unit consists of two half-dimers (both being completed across an inversion centre), one fully occupied ordered acetone site, one partially occupied acetone

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

metal-organic papers

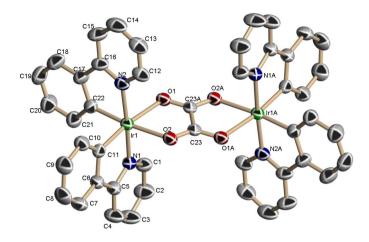


Figure 1

The molecular structure of (II). All acetone molecules and H atoms have been omitted for clarity. Only one of the two crystallographically independent molecules is depicted. Anisotropic displacement ellipsoids are drawn at the 50% probability level. [Symmetry code: A, 1-x, -y, 1-z.]

$$\bigcap_{0} \bigcap_{0} \bigcap_{$$

Hydroperoxide

Figure 2

Aldol condensation between the vacac ligand and acetone, and the dehydration of the hydroperoxide that is formed from A reacting with singlet oxygen.

site [occupancy 0.234 (3)], and one partially occupied and disordered (overlapped) acetone site [occupancies of 0.531 (3) and 0.209 (3)]. The asymmetric unit thus contains the equivalent of one Ir dimer cluster and 1.974 acetone molecules.

Each Ir^{III} ion in (II) is in a pseudo-octahedral coordination environment, where the pyridine N atoms are *trans* to each other and the phenyl C atoms are *trans* to the O atoms of the oxalate bridging ligand. Fig. 1 shows the molecular structure of one of the iridium dimers, and selected structural data are compiled in Table 1.

The formation of complex (II) from (I) is unexpected. Oxalate was not added to the reaction mixture, nor is oxalate associated with the synthesis of (I). Complex (II) did not form in CHCl₃, CH₃CN or methanol, or if under an argon atmosphere, or if shielded from light. Because acetone is required for the formation of (II), it is suggested that the initial step involves an aldol condensation between the enolate vacac

Figure 3
Cleavage of the tricarbonyl and formation of oxalic acid.

anion and acetone (Fig. 2) (Wasserman & Ives, 1981; Wasserman, 2004).

Dioxygen quenching of the excited state of (I) likely produces singlet oxygen which attacks the aldol condensation product A (Fig. 2), forming a hydroperoxide which can then dehydrate to form the tricarbonyl species. The tricarbonyl species can be easily hydrated to the geminal-diol and further hydrolysis can form the aldehydo ester (Rubin & Gleiter, 2000). Hydrolysis of the allyl ester and air oxidation of the aldehyde gives oxalic acid (Fig. 3).

The formation of (II) is indicative that $[Ir(ppy)_2(vacac)]$ is subject to decomposition and this may have implications in its use in oxygen-sensor applications.

Experimental

[Ir(ppy)₂(vacac)] (10 mg) was dissolved in acetone- d_6 (1 ml) and placed in an NMR tube. No attempt was made to exclude air from the tube. The tube was left sealed, but unshielded from light, for four weeks. Small golden crystals of (II) were harvested from the NMR tube for X-ray crystallography. IR: ν (C=O) 1617 cm⁻¹. The complex could also be prepared by reacting oxalate with (μ -dichloro)tetra-kis(phenylpyridine)diiridium(III).

Crystal data

$[Ir(C_{11}H_8N)_4(C_2O_4)]\cdot 1.974C_3H_6O$	Z = 2
$M_r = 1203.79$	$D_x = 1.683 \text{ Mg m}^{-3}$
Triclinic, $P\overline{1}$	Mo $K\alpha$ radiation
a = 9.9708 (5) Å	Cell parameters from 8192
b = 13.0403 (7) Å	reflections
c = 19.3556 (10) Å	$\theta = 1.7 - 29.6^{\circ}$
$\alpha = 103.383 \ (1)^{\circ}$	$\mu = 5.65 \text{ mm}^{-1}$
$\beta = 99.003 (1)^{\circ}$	T = 173 (2) K
$\gamma = 98.203 \ (1)^{\circ}$	Block, gold
$V = 2375.9 (2) \text{ Å}^3$	$0.20 \times 0.15 \times 0.10 \text{ mm}$

Data collection

Refinement on F^2

 $wR(F^2) = 0.098$

13184 reflections

602 parameters

S = 1.01

 $R[F^2 > 2\sigma(F^2)] = 0.040$

H-atom parameters constrained

 $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.052P)^{2} + 0.9043P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ $(\Delta/\sigma)_{\text{max}} = 0.040$ $\Delta\rho_{\text{max}} = 2.37 \text{ e Å}^{-3}$ $\Delta\rho_{\text{min}} = -1.13 \text{ e Å}^{-3}$

Table 1 Selected geometric parameters (\mathring{A} , $^{\circ}$).

Ir1-C22	1.979(2)	Ir1′-C11′	1.9876 (19)
Ir1-C11	1.9824 (19)	Ir1′—N1′	2.0191 (17)
Ir1-N1	2.0308 (13)	Ir1'-N2'	2.0303 (18)
Ir1-N2	2.0429 (14)	Ir1′—O1′	2.1931 (13)
Ir1-O2	2.1911 (14)	Ir1′—O2′	2.1969 (15)
Ir1-O1	2.1938 (13)	$O1-C23^{i}$	1.238 (2)
Ir1′-C22′	1.980 (2)		, ,
N1-Ir1-N2	175.79 (7)	C22'-Ir1'-C11'	89.48 (8)
N2-Ir1-O2	96.11 (6)	C22'-Ir1'-N1'	96.51 (8)
C22-Ir1-O1	98.03 (7)	C11'-Ir1'-N1'	80.88 (8)
C11-Ir1-O1	171.29 (7)	C22′-Ir1′-N2′	80.65 (8)
N1-Ir1-O1	94.75 (5)	C11'-Ir1'-N2'	94.79 (8)
N2-Ir1-O1	85.70 (5)	N1' - Ir1' - N2'	174.88 (7)
O2-Ir1-O1	76.18 (5)		` '

Symmetry code: (i) -x + 1, -y, -z + 1.

H atoms were placed in calculated positions and constrained to ride on their parent atoms, with C—H distances in the range 0.95–0.98 Å and with $U_{\rm iso}({\rm H})=1.2U_{\rm eq}({\rm C}),$ or $1.5U_{\rm eq}({\rm C})$ for methyl atoms. First- and second-neighbour distance restraints were applied to the disordered solvent molecules. Equal anisotropic displacement parameter restraints were applied to three pairs of disordered atoms of solvent molecules that almost overlap. The highest peak and the deepest hole in the final Fourier map are 0.80 and 1.36 Å, respectively, from the Ir atom.

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT* (Bruker, 2001); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Bruker, 2000); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

Financial support from the Natural Science and Engineering Research Council of Canada, in the form of a Discovery Grant (RJC) and a postgraduate scholarship (MCD), is gratefully acknowledged. CEBE thanks the NRC for supporting his research through the Research Associate Program.

References

Bruker (2000). SHELXTL. Bruker AXS Inc. Madison, Wisconsin, USA. Bruker (2001). SMART and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.

DeRosa, M. C., Hodgson, D. J., Enright, G. D., Dawson, B., Evans, C. E. B. & Crutchley, R. J. (2004). J. Am. Chem. Soc. 126, 7619–7626.

DeRosa, M. C., Mosher, P. J., Yap, G. P. A., Focsaneanu, K.-S., Crutchley, R. J. & Evans. C. E. B. (2003). *Inorg. Chem.* 42, 4864–4872.

Rubin, M. B. & Gleiter, R. (2000). Chem. Rev. 100, 1121-1164.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Wasserman, H. H. (2004). Personal communication.

Wasserman, H. H. & Ives, J. L. (1981). Tetrahedron, 37, 1825-1852.